The structure of glucose has been derived from a consideration of facts and conclusions such as the following:

- 1. Elemental analysis and molecular weight determination show that the molecular formula of glucose is $C_6H_{12}O_6$.
- 2. Complete reduction of glucose with concentrated hydriodic acid in the presence of red phosphorous produces n-hexane (C_6H_{14}) as the major product. This indicates that the six carbon atoms in the glucose molecule form a consecutive, unbranched chain.
- 3. Glucose readily dissolves in water to give a neutral solution. This indicates that the O glucose molecule does not contain a carboxyl (—C —O—) group.
- 4. Glucose reacts with hydroxylamine to form a monoxime, or adds only one mole of hydrogen cyanide to give a cyanohydrin. These reactions indicate the presence of O
 either an aldehyde (—C—H) or a ketone (—C—) group.
- 5. Mild oxidation of glucose with bromine water gives gluconic acid, a monocarboxylic acid with molecular formula C₆H₁₂O₇. This indicates the presence of an aldehyde group since only the aldehyde group can be oxidized to an acid by gaining one oxygen atom without losing any hydrogen atom.
- 6. Further oxidation of gluconic acid with nitric acid gives glucaric acid, a dicarboxylic acid with molecular formulat C₆H₁₀O₈. This indicates the presence of a primary alcohol group, since oxidation occurs with the loss of two hydrogens and gain of one oxygen atom.
- 7. Glucose reduces an ammoniacal solution of silver oxide (Tollen's reagent) to metallic silver, or a basic solution of cupric ion (Fehling's solution) to red cuprous oxide. These reactions further confirm the presence of aldehyde group.
- 8. Glucose reacts with acetic anhydride in the presence of pyridine to form an pentaacetate. This reaction indicates the presence of five hydroxyl groups in a glucose molecule.

With the help of above reactions, it can be concluded that glucose is a pentahydroxy hexanal, which can be represented as,

2,3,4,5,6- Pentahydroxy hexanal (Glucose)